
 shown alongside each other so that the children can make links between the way the calculation can be represented.

National Curriculum statutory requirements:

- Represent and use number bonds and related subtraction facts within 20
tory requirements
- Add one-digit and two-digit numbers to 20 , including zero
- Read, write and interpret mathematical statements involving addition (+) and equals (=) signs
- Solve one-step problems that involve addition using concrete objects and pictorial representations, and missing number problems such as $7=$? +3
- Pupils memorise and reason with number bonds to 10 and 20 in several forms (for example, $9+7=16 ; 16-7=9 ; 7=16-9$). They should realise the effect of adding or subtracting zero. This establishes addition and subtraction as related operations.
- Pupils combine and increase numbers, counting forwards and backwards.
- They discuss and solve problems in familiar practical contexts, including using quantities. Problems should include the terms: put together, add, altogether, total, take away, distance between, difference between, more than and less than, so that pupils develop the concept of addition and subtraction and are enabled to use these operations flexibly.

Concrete

Combining two parts to make a whole.

N.B. A range of objects and other manipulative should also be used here egg. teddies, stones, counters, sticks. As you progress here, start to make links with the pictorial.

Counting on - using cubes, numicon, bead strings etc.

Start with the larger number then count on using the smaller number 1 by 1 to find the answer.

Pictorial

Combining two parts to make a whole.

Counting on - use a numberline which encourages the children to count on, rather than count all.
HA PO

Start with the larger number then count on using the smaller number 1 by 1 to find the answer or in one/two jumps.

$$
5+4=9
$$

$$
12+5=17
$$

$$
5+2+2=9
$$

A bar model can also be used which encourages children to count on.

Abstract

Combining two parts to make a whole.

$\mathbf{3 + 7} \mathbf{7} \mathbf{1 0}$

$6+4$

$3+6$
 $=4$

Counting on - the abstract number line:

- What is 5 more than 9 ?
- What is the sum of 5 and 5 ?
- What's the total of 12 and 3 ?
- What's the total of 5 and 12? - put larger number first or look at a range of different strategies e.g. $10+2$

Place the larger number in your head and count on with the smaller number to find your answer.
Lead on to questions such as this:

- $5+?=8$ What do we add to 5 to make 8 ?

Key Vocabulary:

add, addition, more, plus, increase, sum, total, altogether, difference, same as, equals, sign, units/ones, inverse, how many more to make ...?, is the same as, combine, exchange

Look at the previous learning and recap where appropriate.

In Year 1, children should be encouraged to use the CPA approach to embed their understanding of number and their relationships.

National Curriculum statutory requirements:

- Represent and use number bonds and related subtraction facts within 20
- Add one-digit and two-digit numbers to 20 , including zero
- Read, write and interpret mathematical statements involving addition (+) and equals (=) signs
- Solve one-step problems that involve addition using concrete objects and pictorial representations, and missing number problems such as $7=?+3$

Concrete

Regrouping to make 10 - using ten frames, counters/cubes. Base 10 or using Numicon.

$6+5=11$

ters/cubes. Regroup or partition the smaller number to make 10 e.g. $7+5$ becomes $7+3+2=12$.

Pictorial

Non-statutory requirements:

- Pupils memorise and reason with number bonds to 10 and 20 in several forms (for example, $9+7=16 ; 16-7=9 ; 7=16-9$). They should realise the effect of adding or subtracting zero. This establishes addition and subtraction as related operations.
- Pupils combine and increase numbers, counting forwards and backwards.
- They discuss and solve problems in familiar practical contexts, including using quantities. Problems should include the terms: put together, add, altogether, total, take away, distance between, difference between, more than and less than, so that pupils develop the concept of

Regrouping to make 10
$8+6=14$
If I am at eight, how many more do I need to make 10? How many more do I add on now

Children to develop an understanding of equality

 e.g.
Abstract

Start with the larger number and use the smaller number to make 10 .

Key Vocabulary:

add, addition, more, plus, increase, sum, total, altogether, difference, same as, equals, sign, units/ones, inverse, how many more to make ...?, is the same as, combine, exchange

Look at the previous learning and recap where appropriate.
In Year 2, children should be encouraged to use the CPA approach to embed their understanding of number and their relationships.

National Curriculum statutory requirements:

- Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100
- Add numbers mentally, including: a two-digit number and ones; a two-digit number and tens; two two-digit numbers; adding three one-digit numbers
- Add numbers using concrete objects and pictorial presentations, including: a two-digit number and ones; a two-digit number and tens; two two-digit numbers; adding three one-digit numbers
- Show that addition of two numbers can be done in any order
- Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems
- Solve problems with addition using concrete objects and pictorial representations, including those involving numbers, quantities and measures

Combine to make 10 first if possible, or bridge 10 then add third digit. 10 and two more makes 12.

Th N.B.

Before this stage ensure that the children are confident at using a range of manipulatives to add numbers before using a place value grid; they should be confident in grouping tens and ones e.g. $34+5=39$ (34 is 3 tens and 4 ones. 4 ones and 5 ones are 9 ones. The total is 3 tens and 9 ones.)
$23+5$
No exchange
Step 1:

- Make the calculation.

Step 2:

- Combine all the ones.

There are 8 ones.
Step 3:

- Move the tens down. There are 2 tens.

Step 4:

- There are 2 tens and 8 ones (28).
$23+5=8$

| $23+5$ |
| :--- | :--- |
| No exchange |

| $23+5$ |
| :--- | :--- |
| No exchange |

Key Vocabulary:

add, addition, more, plus, increase, sum, total, altogether, difference, same as, equals, sign, units/ones, inverse, how many more to make ...?, is the same as, combine, exchange

Addition - Year 2 Calculation Policy

EDUCATION PARTNERSHIP
Look at the previous learning and recap where appropriate.
In Year 2, children should be encouraged to use the CPA approach to embed their understanding of number and their relationships.

Where possible the concrete, pictorial and abstract should be shown alongside each other so that the children can make links between the way the calculation can be represented.

National Curriculum statutory requirements:

- Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100
- Add numbers mentally, including: a two-digit number and ones; a two-digit number and tens; two two-digit numbers; adding three one-digit numbers
- Add numbers using concrete objects and pictorial presentations, including: a two-digit number and ones; a two-digit number and tens; two two-digit numbers; adding three one -digit numbers
- Show that addition of two numbers can be done in any order
- Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems
- Solve problems with addition using concrete objects and pictorial representations, including those involving numbers, quantities and measures

Non-statutory requirements

- Pupils extend their understanding of the language of addition and subtraction to include sum and difference.
- Pupils practise addition and subtraction to 20 to become increasingly fluent in deriving facts such as using $3+7=10 ; 10-7=3$ and $7=10-3$ to calculate $30+70=100 ; 100-70=$ 30 and $70=100-30$. They check their calculations, including by adding to check subtraction and adding numbers in a different order to check addition (for example, $5+2+1=1+5+2$ $=1+2+5$). This italishes commutativity and associativity of addition.
- Recording addition and subtraction in columns supports place value and prepares for formal written methods with larger numbers.

Pictorial		
$\begin{array}{\|l\|} \hline 23+9 \\ \text { Exchanging ones } \end{array}$	Tens	Ones
	112	00^{0}
		(1)0 0 9 0 0 9 0 0 0
	3	2

$34+20$
 Adding multiples of 10 only -

 not bridging a 100

Abstract
$23+9$
Exchanging ones

$2 \quad 3$
$+\quad$9 3
1

$34+20$
Adding multiples of 10 only - not bridging a 100

34
$+\quad 2 \quad 0$
$5 \quad 4$

Look at the previous learning and recap where appropriate.

In Year 2, children should be encouraged to use the CPA approach to embed their understanding of number and their relationships.

National Curriculum statutory requirements: - Recall and use addition and subtraction facts to 20 fluently, and derive and use related - Add numbers mentally, including: a two-digit number and ones; a two-digit number and - Add numbers using concrete objects and pictorial presentations, including: a two-digit digit numbers - Show that addition of two numbers can be done in any order - Recognise and use the inverse relationship between addition and subtraction and use this - Solve problems with addition using concrete objects and pictorial representations, inclu	to 100 two two-digit numbers; adding three one-digit numbers and ones; a two-digit number and tens; two two-digit numbers; adding three one- heck calculations and solve missing number problems ose involving numbers, quantities and measures	Non-statutory requirements: - Pupils extend their understanding of the language of addition and subtraction to include sum and difference. - Pupils practise addition and subtraction to 20 to become increasingly fluent in deriving facts such as using $3+7=10 ; 10-7=3$ and $7=10-3$ to calculate $30+70=100 ; 100-70$ $=30$ and $70=100-30$. They check their calculations, including by adding to check subtraction and adding numbers in a different order to check addition (for example, $5+2+1$ $=1+5+2=1+2+5)$. This establishes commutativity and associativity of addition. - Recording addition and subtraction in columns supports place value and prepares for formal written methods with larger numbers.
ncret	-	bstract
$21+14$ No exchange Step 1: - Make the calculation. Step 2: - Combine all the ones. There are 5 ones. Step 3: - Combine all the tens. There are 3 tens. Step 4: - There are 3 tens and 5 ones (35). $21+14$ = 35	$21+14$ No exchange	$21+14$ No exchange
$28+16$ Exchanging ones Step 1: - Make the calculation. Step 2: - Combine all the ones. There are 14 ones. Step 3: - Exchange 10 ones for a 10. Step 4: - The 10 must go in the tens column. Step 5: - Combine all the tens. There are 4 tens. Step 6: - There are 4 tens and 4 ones (44). $\mathbf{2 8 + 1 6 = 4 4}$	$28+16$ Exchanging ones	$28+16$ Exchanging ones 28

Key Vocabulary:

add, addition, more, plus, increase, sum, total, altogether, difference, same as, equals, sign, units/ones, inverse, how many more to make ...?, is the same as, combine, exchange

Addition - Year 3 Calculation Policy

EDUCATION PARTNERSHIP
In Year 3, children should be encouraged to consider whether they can calculate mentally, with or without jottings before using a written method.
Where possible the concrete, pictorial and abstract should be shown alongside each other so that the children can make links between the way the calculation can be represented.

National Curriculum statutory requirements:

- Add numbers mentally, including: a three-digit number and ones; a three-digit number and tens; a three-digit number and hundreds
- Add numbers with up to three digits, using formal written methods of columnar addition
- Estimate the answer to a calculation and use inverse operations to check answers
- Solve problems, including missing number problems, using number facts, place value, and more complex addition.

Concrete			
$321+14$ No exchange Step 1: - Position the counters on the grid. Step 2: - Combine the ones. Combine the tens. Combine the hundreds. Step 3: - There are 3 hundreds, 3 tens and 5 ones (335). $321+14=335$	Hundreds	Tens	Ones
	(100) 3	(10) 2	(1) 1
		${ }_{(10} 1$	${ }^{(1)}{ }^{(1)} 4$
	(100) 3	(10) 3	(1) ${ }_{1}^{1} 5$

$328+26$
Exchanging ones

Step 2:
Combine all the ones
Step 3:

- Exchange 10 ones for a 10. The 10 Step 4:
Combine all the tens.
Step 5:
Combine the hundreds.
Step 6:

Non-statutory requirements:

- Practise solving varied addition questions. For mental calculations with two-digit numbers, the answers could exceed 100.
- Use understanding of place value and partitioning, and practise using columnar addition with increasingly large numbers up to three digits to become fluent.

$328+26$

Exchanging ones

Key Vocabulary:

add, addition, more, plus, increase, sum, total, altogether, difference, same as, equals, sign, units/ones, inverse, how many more to make ...?, is the same as, combine, exchange

Addition - Year 3 Calculation Policy

EDUCATION PARTNERSHIP
In Year 3, children should be encouraged to consider whether they can calculate mentally, with or without jottings before using a written method.
Where possible the concrete, pictorial and abstract should be shown alongside each other so that the children can make links between the way the calculation can be represented.

National Curriculum statutory requirements:

- Add numbers mentally, including: a three-digit number and ones; a three-digit number and tens; a three-digit number and hundreds
- Add numbers with up to three digits, using formal written methods of columnar addition
- Estimate the answer to a calculation and use inverse operations to check answers
- Solve problems, including missing number problems, using number facts, place value, and more complex addition.

Concrete			
$371+54$ Exchanging tens	Hundreds	Tens	Ones
Step 1: - Position the counters on the grid. Step 2: - Combine the ones. Step 3: - Combine the tens. Step 4: - Exchange 10 tens for 100 . The 100 must go in the hundreds column. Step 5: - Combine the hundreds. Step 6: - There are 4 hundreds, 2 tens and 5 ones. $\mathbf{3 1 7} \mathbf{+ 5 4 = 4 2 5}$			

$368+44$
 Exchanging ones and tens

Step 1:

- Position the counters on the grid.

Step 2:

- Combine all the ones. Exchange

10 ones for a 10. The 10 must go in the tens column.
Step 3:
Combine all the tens. Exchange 10 tens for a 100. The 100 must go in the hundreds column.
Step 5:
. Combine the hundreds.
Step 6:
There are 4 hundreds, 1 ten and 2 ones.

Pictorial

$368+44$

Non-statutory requirements:

- Practise solving varied addition questions. For mental calculations with two-digit numbers, the answers could exceed 100.
- Use understanding of place value and partitioning, and practise using columnar addition with increasingly large numbers up to three digits to become fluent.

	Abstract
$371+54$ Exchanging tens	
$368+44$	4

$368+44$
Exchanging ones and tens

368
$+\quad 4 \quad 4$
4
1

Key Vocabulary:

Addition - Year 3 Calculation Policy

Look at the previous learning and recap where appropriate.

In Year 3, children should be encouraged to consider whether they can calculate mentally, with or without jottings before using a written method.

National Curriculum statutory requirements:

- Add numbers mentally, including: a three-digit number and ones; a three-digit number and tens; a three-digit number and hundreds
- Add numbers with up to three digits, using formal written methods of columnar addition
- Estimate the answer to a calculation and use inverse operations to check answers
- Solve problems, including missing number problems, using number facts, place value, and more complex addition.

Non-statutory requirements:

- Practise solving varied addition questions. For mental calculations with two-digit numbers, the answers could exceed 100.
- Use understanding of place value and partitioning, and practise using columnar addition with increasingly large numbers up to three digits to become fluent

321 + 149

Exchanging ones
Step 1:

- Position the counters on the grid. Step 2:
- Combine all the ones.
- Exchange 10 ones for a 10.

The 10 must go in the tens column
Step 3:

- Combine all the tens.

Step 4:
Combine the hundreds
Step 5:
There are 4 hundreds, 7 tens and
0 ones. $\mathbf{3 2 1}+149=470$

$321+149$
Exchanging ones

321
+149
470
1

Key Vocabulary:

Addition - Year 3 Calculation Policy

Look at the previous learning and recap where appropriate.

In Year 3, children should be encouraged to consider whether they can calculate mentally, with or without jottings before using a written method.

National Curriculum statutory requirements:

- Add numbers mentally, including: a three-digit number and ones; a three-digit number and tens; a three-digit number and hundreds
- Add numbers with up to three digits, using formal written methods of columnar addition
- Estimate the answer to a calculation and use inverse operations to check answers
- Solve problems, including missing number problems, using number facts, place value, and more complex addition.

Non-statutory requirements:

- Practise solving varied addition questions. For mental calculations with two-digit numbers, the answers could exceed 100.
- Use understanding of place value and partitioning, and practise using columnar addition with increasingly large numbers up to three digits to become fluent.

Con	Pictorial	Abstract
$371+278$ Exchanging tens Step 1: - Position the counters on the grid. Step 2: - Combine the ones. Step 3: - Combine the tens. Step 4: - Exchange 10 tens for 100 . The 100 must go in the hundreds column. Step 5: - Combine the hundreds. Step 6: - There are 6 hundreds, 4 tens and 9 ones. $\mathbf{3 1 7}+\mathbf{2 7 8}=\mathbf{6 4 9}$	$371+278$ Exchanging tens	$\mathbf{3 7 1}+278$ Exchanging tens
$368+345$ Exchanging ones and tens Step 1: - Position the counters on the grid. Step 2: - Combine all the ones. Exchange 10 ones for a 10. The 10 must go in the tens column. Step 3: - Combine all the tens. Exchange 10 tens for a 100. The 100 must go in the hundreds column. Step 4: - Combine the hundreds. Step 5: - There are 7 hundreds, 1 ten and 3 ones. $368+345=713$	$368+345$ Exchanging ones and tens	$368+345$ Exchanging ones and tens

Key Vocabulary:

Look at the previous learning and recap where appropriate.
Throughout Year 4, children should be encouraged to consider whether they can calculate mentally, with or without jottings before using a written method. If they can, then they should.

National Curriculum statutory requirements:

- Add numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate
- Estimate and use inverse operations to check answers to a calculation
- Solve addition two-step problems in contexts, deciding which operations and methods to use and why

Non-statutory requirements:
- Pupils continue to practise both mental methods and columnar addition with
increasingly large numbers to aid fluency.

- Pupils solve two-step problems in contexts, choosing the appropriate operation, working with increasingly harder numbers.

Some children may still need the CPA approach, please see earlier work, especially when dealing with larger numbers.
This section is split into stages of progression.

$\text { STAGE 1-6234 + } 54$ No exchange	STAGE 2-6239 + 54 Exchanging ones	STAGE 3-6272 + 54 Exchanging tens	STAGE 4-6278 + 54 Exchanging ones and tens	STAGE 5-6415 + 154 No exchange
$\begin{array}{llll}6 & 2 & 3\end{array}$	$\begin{array}{llll}6 & 2 & 3\end{array}$	$\begin{array}{llll}6 & 2 & 7\end{array}$	$6 \quad 278$	$\begin{array}{llll}6 & 4 & 1 & 5\end{array}$
+ 54	$+\quad 54$	+ 54	+ 54	$+154$
$\begin{array}{llll}6 & 2 & 8 & 8\end{array}$	$\begin{array}{llll}6 & 2 & 9 & 3\end{array}$	$\begin{array}{llll}6 & 3 & 2\end{array}$	$\begin{array}{llll}6 & 3 & 3\end{array}$	$\begin{array}{llll}6 & 5 & 6 & 9\end{array}$
	1	1	1	
STAGE 6-6416 + 154 Exchanging ones	STAGE 7-6245 + 374 Exchanging tens	STAGE 8 - 6225 + 874 Exchanging hundreds	$\underset{\text { STAGE 9-6278 }+374}{\text { Exchanging ones and tens }}$	STAGE 10-6278 + 814 Exchanging ones and hundreds
$\begin{array}{llll}6 & 4 & 1\end{array}$	$\begin{array}{llll}6 & 2 & 4 & 5\end{array}$	$\begin{array}{llll}6 & 2 & 2\end{array}$	$\begin{array}{llll}6 & 2 & 7 & 8\end{array}$	$\begin{array}{llll}6 & 2 & 7 & 8\end{array}$
+ 154	+ 374	+ 874	+ 374	+ 814
$\begin{array}{llll}6 & 5 & 7 & 0\end{array}$	$\begin{array}{llll}6 & 6 & 1 & 9\end{array}$	70098	$\begin{array}{llll}6 & 6 & 5 & 2\end{array}$	$\begin{array}{llll}7 & 0 & 9 & 2\end{array}$
1	1	1	11	1

Key Vocabulary:

add, addition, more, plus, increase, sum, total, altogether, difference, same as, equals, sign, units/ones, inverse, how many more to make ...?, is the same as, combine, exchange

Look at the previous learning and recap where appropriate.

Throughout Year 4, children should be encouraged to consider whether they can calculate mentally, with or without jottings before using a written
National Curriculum statutory requirements:

- Add numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate
- Estimate and use inverse operations to check answers to a calculation
- Solve addition two-step problems in contexts, deciding which operations and methods to use and why

Non-statutory requirements:

- Pupils continue to practise both mental methods and columnar addition with increasingly large numbers to aid fluency.
- Pupils solve two-step problems in contexts, choosing the appropriate operation, working with increasingly harder numbers.

Some children may still need the CPA approach, please see earlier work, especially when dealing with larger numbers.

This section is split into stages of progression.

STAGE 11-6273+864	STAGE 12-6926 + 484 , dreds	STAGE 13-6147 + 2352 No exchange	STAGE 14-6147 + 2344 Exchanging ones	STAGE 15-6147 + 2372 Exchanging tens
$\begin{array}{llll}6 & 2 & 7\end{array}$	$\begin{array}{lll}6 & 9 & 2\end{array}$	$\begin{array}{llll}6 & 1 & 4 & 7\end{array}$	$\begin{array}{llll}6 & 1 & 4 & 7\end{array}$	$\begin{array}{llll}6 & 1 & 4 & 7\end{array}$
+ 864	+ 484	+ 2352	+ 2344	+2372
$\begin{array}{llll}7 & 1 & 3 & 7\end{array}$	$\begin{array}{llll}7 & 4 & 1 & 0\end{array}$	$\begin{array}{llll}8 & 4 & 9 & 9\end{array}$	$\begin{array}{llll}8 & 4 & 9 & 1\end{array}$	851519
1	$1 \quad 1$		1	1
STAGE $16-6547+2942$ Exchanging hundreds	$\underset{\substack{\text { STAGE } 17-6547+2364 \\ \text { ExChanging ones and tens }}}{\text { and }}$	STAGE $18-6547+2724$ Exchanging ones and hundreds	STAGE $19-6157+2982$ Exchanging tens and hundreds	$\begin{aligned} & \text { STAGE 20-6657+2984 } \\ & \begin{array}{l} \text { Exchanging ones, tens and } \\ \text { hundreds } \end{array} \end{aligned}$
$\begin{array}{llll}6 & 5 & 4 & 7\end{array}$	$\begin{array}{llll}6 & 5 & 4 & 7\end{array}$	$\begin{array}{llll}6 & 5 & 4 & 7\end{array}$	$\begin{array}{llll}6 & 1 & 5 & 7\end{array}$	$\begin{array}{llll}6 & 6 & 5 & 7\end{array}$
+ 2942	+ 2364	+ 2724	+ 2982	+ 2984
$\begin{array}{llll}9 & 4 & 8 & 9\end{array}$	$\begin{array}{llll}8 & 9 & 1 & 1\end{array}$	$\begin{array}{llll}9 & 2 & 7 & 1\end{array}$	$\begin{array}{llll}9 & 1 & 3 & 9\end{array}$	$\begin{array}{llll}9 & 6 & 4 & 1\end{array}$
1	11	1	11	$1 \begin{array}{lll}1 & 1\end{array}$

Key Vocabulary:

add, addition, more, plus, increase, sum, total, altogether, difference, same as, equals, sign, units/ones, inverse, how many more to make ...?, is the same as, combine, exchange

Addition - Year 5 Calculation Policy

EDUCATION PARTNERSHIP

Look at the previous learning and recap where appropriate.
Throughout Year 5, children should be encouraged to consider whether they can calculate mentally, with or without jottings before using a written
National Curriculum statutory requirements:

- Add numbers mentally with increasingly large numbers
- Add and whole numbers with more than 4 digits, including using formal written methods (columnar addition)
- Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
- Solve addition multi-step problems in contexts, deciding which operations and methods to use and why

Non-statutory requirements:

- Pupils practise using the formal written methods of columnar addition with increasingly large numbers to aid fluency.
- They practise mental calculations with increasingly large numbers to aid fluency (e.g. $12462-2300=10$ 162).

Some children may still need the CPA approach, please see earlier work, especially when dealing with larger numbers.
 This section is split into stages of progression.

Stage 1: 5 digit + 3 digit Suggested order of teaching: - no exchanges • two exchanges	Stage 2: 5 digit + 4 digit Suggested order of teaching: - no exchanges - three exchanges - one exchange - four exchanges $\begin{array}{r} \text { Thh } \\ +\quad \\ + \\ \text { Th } \end{array} \quad \mathbf{H} \quad \text { T } \quad 0$	Stage 3: 5 digit + 5 digit Suggested order of teaching: - no exchanges • three exchanges - one exchange • four exchanges $\begin{array}{rcccc} \text { Th } & \text { Th } & \mathbf{H} & \mathbf{T} & \mathbf{0} \\ + & \text { Th } & \text { Th } & \mathbf{H} & \mathbf{T} \\ \mathbf{0} \end{array}$	Stage 4: 6 digit + 3 digit Suggested order of teaching: - no exchanges • two exchanges
Stage 5: 6 digit + 4 digit Suggested order of teaching:	Stage 6: 6 digit + 5 digit Suggested order of teaching: - no exchanges • three exchanges - one exchange - four exchanges - two exchanges - five exchanges	Stage 7: 6 digit + 6 digit Suggested order of teaching: - no exchanges - three exchanges - one exchange - four exchanges - two exchanges • five exchanges	

Key Vocabulary:

Addition - Year 5 Calculation Policy

Look at the previous learning and recap where appropriate.
Throughout Year 5, children should be encouraged to consider whether they can calculate mentally, with or without jottings before using a written method.

National Curriculum statutory requirements:

- Add numbers mentally with increasingly large numbers
- Add and whole numbers with more than 4 digits, including using formal written methods (columnar addition)
- Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
- Solve addition multi-step problems in contexts, deciding which operations and methods to use and why

Non-statutory requirements:

- Pupils practise using the formal written methods of columnar addition with increasingly large numbers to aid fluency.
- They practise mental calculations with increasingly large numbers to aid fluency (e.g. $12462-2300=10162$)

Some children may still need the CPA approach, please see earlier work, especially when dealing with larger numbers.
This section is split into stages of progression.

STAGE 1 - 2.3 + 4.4 No exchange $\begin{array}{r} 2.3 \\ +\quad 4.4 \\ \hline 6.7 \end{array}$	STAGE 2-2.3 + 1.8 Exchanging tenths $+\begin{aligned} & 2.3 \\ & 1 . \\ & \hline 4 . \end{aligned}$	STAGE 3-2.34 + 4.45 No exchange $\begin{array}{r} 2.34 \\ +\quad 4.45 \\ \hline 6.79 \end{array}$	STAGE 4-2.34 + 4.47 Exchanging hundredths $\begin{array}{r} 2.3 \\ +\quad 4.4 \\ \hline 6.8 \end{array}$	STAGE 5-2.34 + 4.9 Exchanging tenths $\begin{gathered} 2 . \\ +\begin{array}{l} 2 \\ 4 \end{array} \\ \hline 7 \\ \hline 1 \\ \hline \end{gathered}$
STAGE 6-2.34 + 0.99 Exchanging tenths and hundredths $\begin{array}{r} 2.3 \\ +\begin{array}{r} 2 \\ 0.3 \end{array} 9 \\ \hline 3 . \end{array}$	STAGE 7-62.3 + 24.4 No exchange $\begin{array}{r} 62.3 \\ +\quad 24.4 \\ \hline 86.7 \end{array}$	STAGE 8-62.9 + 20.7 Exchanging tenths $\begin{array}{r} 62.9 \\ +\quad 20.7 \\ \hline 83 \\ \hline \end{array}$	STAGE 9-69.2 + 29 Exchanging ones $\begin{array}{r} 69 \cdot 2 \\ +\begin{array}{c} 6 \\ 2 \end{array} 9 \cdot 0 \\ \hline 9 \end{array} 8 \cdot 2$ Make sure this is addressed through teaching.	STAGE 10-69.2 + 20.9 Exchanging tenths and ones $+\begin{array}{llll} 6 & 9 . & 2 \\ + & 0 & . & 9 \\ \hline 9 & 0 & . & 1 \\ \hline 1 & 1 & \end{array}$

Key Vocabulary:

add, addition, more, plus, increase, sum, total, altogether, difference, same as, equals, sign, units/ones, inverse, how many more to make ...?, is the same as, combine, exchange

Look at the previous learning and recap where appropriate.

Throughout Year 5, children should be encouraged to consider whether they can calculate mentally, with or without jottings before using a written

National Curriculum statutory requirements:

- Add numbers mentally with increasingly large numbers
- Add and whole numbers with more than 4 digits, including using formal written methods (columnar addition)
- Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
- Solve addition multi-step problems in contexts, deciding which operations and methods to use and why

Non-statutory requirements:

- Pupils practise using the formal written methods of columnar addition with increasingly large numbers to aid fluency.
- They practise mental calculations with increasingly large numbers to aid fluency (e.g. $12462-2300=10162$).

Some children may still need the CPA approach, please see earlier work, especially when dealing with larger numbers. This section is split into stages of progression.

STAGE 11-62.34 + 24 No exchange $\begin{array}{r} 62.34 \\ +24.00 \\ \hline 86.34 \end{array}$	STAGE 12-62.34 + $\mathbf{1 0 . 4 8}$ Exchanging hundredths $\begin{array}{r} 62.34 \\ +10.48 \\ \hline 72.82 \\ \hline 7 \end{array}$	STAGE 13-62.34+ 24.07 Exchanging tenths $\begin{array}{r} 62.34 \\ +24.07 \\ \hline 86.41 \\ \hline 1 \end{array}$	STAGE 14-62.94 + 24.08 Exchanging hundredths and tenths $\begin{array}{r} 62.94 \\ +24.08 \\ \hline 87.02 \\ \hline 1.1 \end{array}$	STAGE 15-62.91 + 27.09 Exchanging hundredths, tenths and ones $\begin{array}{r} 6 \\ 6.9 \\ +2 \\ \hline 9 . \end{array}$
STAGE 16 including: - no exchanges • two exchanges $\begin{array}{r} H \quad T \quad O . t \\ + \\ H \quad T \quad O . \\ \hline H \quad T \quad O . \\ \hline \end{array}$				

Key Vocabulary:

add, addition, more, plus, increase, sum, total, altogether, difference, same as, equals, sign, units/ones, inverse, how many more to make ...?, is the same as, combine, exchange

Look at the previous learning and recap where appropriate thus developing the Year 5 experiences.

Throughout Year 6, children should be encouraged to consider whether they can calculate mentally, with or without jottings before using a written method.
National Curriculum statutory requirements:

- Perform mental calculations, including with mixed operations and large numbers
- Solve problems involving addition, including multi-step problems in contexts, deciding which operations and methods to use and why
- Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy
- Solve addition multi-step problems in contexts, deciding which operations and methods to use and why

Non-statutory requirements:

- Pupils practise addition for larger numbers, using the formal written methods - They undertake mental calculations with increasingly large numbers and more complex calculations.
- Pupils round answers to a specified degree of accuracy, e.g. to the nearest 10, 20, 50 etc., but not to a specified number of significant figures
- Pupils explore the order of operations using brackets; for example, $2+1 \times 3$ $=5$ and $(2+1) \times 3=9$.

Some children may still need the CPA approach, please see earlier work, especially when dealing with larger numbers or decimals. This section is split into stages of progression.

STAGE 1: whole numbers with the same number of places No exchange, one exchange, multiple exchanges	STAGE 2: whole numbers with a different number of places No exchange, one exchange, multiple exchanges	STAGE 3: decimal numbers with the same number of places No exchange, one exchange, multiple exchanges
E.g. maximum expectation shown below (though can go into 10 million)	E.g. maximum expectation shown below though second number can be any number up to and into the HTh	E.g. maximum expectation shown below (though can go into 10 million) and only up to thousandths)
M HTh TTh Th H T O	M HTh TTh Th H T O	M HTh TTh Th H T O . t h th
+ M HTh TTh Th H T O	$\pm \quad$ TTh Th H T O	+ M HTh Th Th H T O . T (h th
M HTh TTh Th H T O	M HTh TTh Th H T O	M HTh TTh Th H T O , t h th
STAGE 4: decimal numbers with a different number of places	STAGE 4: decimal numbers with a different number of places	STAGE 4: decimal numbers with a different number of places
No exchange, one exchange, multiple exchanges	No exchange, one exchange, multiple exchanges	No exchange, one exchange, multiple exchanges
E.g 1	E.g 2	E.g 3
	HTh TTh Th H T O . t h	M HTh TTh Th H T O . t h th
$+\quad \mathrm{H} \text { T O. } \mathrm{t} \text { h }$	+ \quad Th H T O . t h th	+ HTh TTh Th H T O . t
TTh Th H T O , t h	TTh Th H T O . t h th	TTh Th H T O . t h th
N.B. you can go up to a million and up to thousandths	N.B. you can go up to a million and up to thousandths	N.B. you can go up to a million and up to thousandths

Key Vocabulary:

add, addition, more, plus, increase, sum, total, altogether, difference, same as, equals, sign, units/ones, inverse, how many more to make ...?, is the same as, combine, exchange

Subtraction - Year I Calculation Policy

National Curriculum statutory requirements:

- Represent and use number bonds and related subtraction facts within 20
- Subtract one-digit and two-digit numbers to 20, including zero
- Read, write and interpret mathematical statements involving subtraction (-) and equals (=) signs
- Solve one-step problems that involve subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=$? -9

Concrete

Taking away by removing objects (within 10)
N.B. Children to physically remove the objects not cross out.

$7-3=4$
3 less than 7 is 4

$7-3=4$
7 subtract 3 is 4

A range of objects and other manipulatives should also be used here e.g. teddies, stones, counters, sticks.
As you progress here, start to make links with the pictorial.
Counting back (within 10) - using cubes, numicon, bead strings etc.

Move objects away from the group, counting backwards.

Move the beads along the bead string as you count backwards.

Pictorial

Taking away by removing objects (within 10)
Children to draw and cross out representations to show taking away.

$8-3=5$
Begin to use a bar model to show these representations also.

$$
\mathbf{X X X}
$$

Counting back (within 10) - do this pictorially and through the use a numberline. Counting back in ones.

Non-statutory requirements:

- Pupils memorise and reason with number bonds to 10 and 20 in several forms (for example, $9+7=16 ; 16-7=9 ; 7=16-9$). They should realise the effect of adding or subtracting zero. This establishes addition and subtraction as related operations.
- Pupils combine and increase numbers, counting forwards and backwards.
- They discuss and solve problems in familiar practical contexts, including using quantities. Problems should include the terms: put together, add, altogether, total, take away, distance between, difference between, more than and less than, so that pupils develop the concept of addition and subtraction and are enabled to use these operations flexibly.

Taking away by removing objects (within 10)

9-4 = ?
? = 8-7

Counting back (within 10)
Put 9 in your head and count back 4.
What number are you at?

9-4 =?

Key Vocabulary:

equal to, take, less, leaves, take away, less than, the difference, subtract, minus, fewer, decrease, '7 take away 3, the difference is four'

Subtraction - Year I Calculation Policy

Look at the previous learning and recap where appropriate.

In Year 1, children should be encouraged to use the CPA approach to embed their understanding of number and their relationships.

National Curriculum statutory requirements:

- Represent and use number bonds and related subtraction facts within 20
- Subtract one-digit and two-digit numbers to 20 , including zero
- Read, write and interpret mathematical statements involving subtraction (-) and equals (=) signs
- Solve one-step problems that involve subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=$? -9

Concrete

Find a missing part (within 10)

Children separate a whole into parts and understand how one part can be found by subtraction. (Links to addition.)

If $\mathbf{6}$ is the whole and 4 is one of the parts, what is the other part?

6-4 = ?
6-? = 4

Finding the difference

Arrange the two groups so that the difference between them can be worked out (like a bar model).

7 is 4 more than 3.
3 is 4 less than 7.
The difference between 7 and 3 is 4 .

Pictorial

Finding a missing part (within 10)

Use pictorial representations to show the part.
Children represent a whole and a part and understand how to find the missing part by subtraction.

10-4 = ?
$10-?=1$
$7-4=?$
7- ? = 4

Finding the difference

Represent objects using sketches or counters to support finding the difference.
$5-3=2$
The difference between 5 and 3 is 2 .
5 is 2 more than 3 and 3 is 2 less than 5 .

$8-5=3$

The difference between 8 and 3 is 5 .
8 is 5 more than 3 and 3 is 5 less than 5 .

Non-statutory requirements

- Pupils memorise and reason with number bonds to 10 and 20 in several forms (for example, $9+7=16 ; 16-7=9 ; 7=16-9$). They should realise the effect of adding or subtracting zero. This establishes addition and subtraction as related operations.
- Pupils combine and increase numbers, counting forwards and backwards.
- They discuss and solve problems in familiar practical contexts, including using quantities. Problems should include the terms: put together, add, altogether, total, take away, distance
between, difference between, more than and less than, so that pupils develop the concept of addition and subtraction and are enabled to use these operations flexibly.

Finding a missing part (within 10)

Children use a part-whole model to support the subtraction to find a missing part.

9-3 = ?
9- ? = 3
Make links to addition.

Finding the difference

Children understand 'find the difference' as subtraction.

The difference between 10 and 4 is 6 .
10-6 = 4
10 is 6 more than 4 and 4 is 6 less than 10

Key Vocabulary:

equal to, take, less, leaves, take away, less than, the difference, subtract, minus, fewer, decrease, '7 take away 3, the difference is four'
National Curriculum statutory requirements:

- Represent and use number bonds and related subtraction facts within 20
- Subtract one-digit and two-digit numbers to 20 , including zero
- Read, write and interpret mathematical statements involving subtraction (-) and equals (=) signs
- Solve one-step problems that involve subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=?-9$

Concrete
 Pictorial

Subtraction of one-digit number within 20 (not bridging 10).
Use a bead string, for example, to subtract 1s efficiently.

Make links to known number facts e.g.
$5-2=3$
$15-2=13$
Subtraction within 20 (10s and 1s)
Use objects to subtract the ten and then the remaining ones e.g. 17-11 (consider the arrangement of the objects).

Subtract the 10
Subtract the 1
17-11 $\quad 17-10=7 \quad 7-1=6 \quad 17-11=6$

Subtraction of one-digit number within 20 (not bridging 10).

Make links to known number facts e.g.
6-4 = 2
16-4=12
Subtraction within 20 (10 s and 1s)
Draw/use ten frames to represent the efficient method of subtracting 10 s and 1 s .

Subtract the 10
19-14 $19-10=9$

Subtract the 1s

Key Vocabulary:

equal to, take, less, leaves, take away, less than, the difference, subtract, minus, fewer, decrease, '7 take away 3, the difference is four'

Sulbtraction = Year I Calculation Policy

EDUCATION PARTNERSHIP

Look at the previous learning and recap where appropriate.

In Year 1, children should be encouraged to use the CPA approach to embed their understanding of number and their relationships.

National Curriculum statutory requirements:

- Represent and use number bonds and related subtraction facts within 20
- Subtract one-digit and two-digit numbers to 20, including zero
- Read, write and interpret mathematical statements involving subtraction (-) and equals (=) signs
- Solve one-step problems that involve subtraction, using concrete objects and pictorial representations, and missing number problems such as 7 = ? - 9

Concrete

Subtraction bridging 10 (using number bonds).
Arrange objects into a 10 and some 1 s , then split the subtracting number into parts using knowledge of number bonds e.g. 14-7
7 is 4 and 3

Key Vocabulary:

equal to, take, less, leaves, take away, less than, the difference, subtract, minus, fewer, decrease, '7 take away 3, the difference is four'

Subbtraction - Year 2 Calculation Policy

EDUCATION PARTNERSHIP

Look at the previous learning and recap where appropriate.

In Year 2, children should be encouraged to use the CPA approach to embed their understanding of number and their relationships.

National Curriculum statutory requirements:

- Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100
- Subtract numbers mentally, including: a two-digit number and ones; a two-digit number and tens; two two-digit numbers
- Subtract numbers using concrete objects and pictorial presentations, including: a two-digit number and ones; a two-digit number and tens; two two-digit numbers
- Show that subtraction of two numbers cannot be done in any order
- Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems
- Solve problems with subtraction using concrete objects and pictorial representations, including those involving numbers, quantities and measures

Non-statutory requirements:

- Pupils extend their understanding of the language of addition and subtraction to include sum and difference
- Pupils practise addition and subtraction to 20 to become increasingly fluent in deriving facts such as using $3+7=10 ; 10-7=3$ and $7=10-3$ to calculate $30+70=10 ; 100-70=30$ and $70=100-30$. They check their
calculations, including by adding to check subtraction and adding in calculations, including by adding to check subtraction and adding numbers in a different order to check addition (for example, $5+2+1=1+5$
$+2+5$). This establishes commutativity and associativity of addition.
- Recording addition and subtraction in columns supports place value and - Recording addition and subtraction in columns supports plate
prepares for formal written methods with larger numbers.

Concrete

Pictorial
Abstract
 ones e.g. $27-5=22$ (27 is 2 tens and 7 ones. 7 ones subtract 2 ones are 5 ones. The total is 2 tens and 5 ones.)

Key Vocabulary:

equal to, take, less, leaves, take away, less than, the difference, subtract, minus, fewer, decrease, '7 take away 3, the difference is four'

Subtraction - Year 2 Calculation Policy

Look at the previous learning and recap where appropriate

In Year 2, children should be encouraged to use the CPA approach to embed their understanding of number and their reiationships.

Where possible the concrete, pictorial and abstract should be shown alongside each other so that the children can make links between the way the calculation can be represented.

National Curriculum statutory requirements

- Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100
- Subtract numbers mentally, including: a two-digit number and ones; a two-digit number and tens; two two-digit number
- Subtract numbers using concrete objects and pictorial presentations, including: a two-digit number and ones; a two-digit number and tens; two two-digit numbers
- Show that subtraction of two numbers cannot be done in any order
- Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems
- Solve problems with subtraction using concrete objects and pictorial representations, including those involving numbers, quantities and measures

Non-statutory requirements:

- Pupils extend their understanding of the language of addition and subtraction to include sum and difference.
- Pupils practise addition and subtraction to 20 to become increasingly fluent in deriving facts such as using $3+7=10 ; 10-7=3$ and $7=10-3$ to calculat $30+70=100 ; 100-70=30$ and $70=100-30$. They check their
calculations, including by adding to check subtraction and adding numbers in a different order to check addition (for example, $5+2+1=1+5+1$
$2+5$). This establishes commutativity and associativity of addition.
- Recording addition and subtraction in columns supports place value and - Recording addition and subtraction in columns supports plat
prepares for formal written methods with larger numbers.

Concrete Pictorial
 Abstract

 tens and ones e.g. $27-5=22 \quad$ (27 is 2 tens and 7 ones. 7 ones subtract 2 ones are 5 ones. The total is 2 tens and 5 ones.)

59-27 No exchange
Step 1: Step 2:
Ones column (9 ones subtract 7 ones) - move down 7 ones from the top to the middle row and then subtract them away. Move the remaining 2 ones down from the top to the bottom row.
Step 3:
Tens column (5 tens subtract 2 tens) - move down 2 tens from the top row to the middle row and then subtract them away. Move the remaining 3 tens down from the top to the bottom row.
Step 4:
There are 3 tens and 2 ones (32). 59-27 = $\mathbf{3 2}$

73-29 Exchanging 10s
Step 1:

- Positio
- Ones column (3 ones subtract 9 ones) - there needs to be an exchange here. Go to the tens column and exchange 1 ten for 10 ones. Add the 10 ones to the ones (top row) - you now have 13 ones. You have 6 tens left in the tens column - cross out the 7 and change to a 6 to show this.

tep 3:

Ones column - now move down 9 counters from the Move the remaining 4 counters down from the top to Move the remain.

Step 4:

Tens column (6 tens subtract 2 tens) - move down 2
tens from the top row to the middle row and then subtract them away. Move the remaining 4 tens down from the top to the bottom row
Step 5:
There are 4 tens and 4 ones (44). $\mathbf{7 3 - 2 9 = 4 4}$

59-27 No exchange

73-29 Exchanging 10s

59-27 No exchange

$$
\begin{array}{r}
59 \\
-\quad 27 \\
\hline 32 \\
\hline
\end{array}
$$

73-29 Exchanging 10s
${ }^{6} 7{ }^{13} 3$

Key Vocabulary:
equal to, take, less, leaves, take away, less than, the difference, subtract, minus, fewer, decrease, '7 take away 3, the difference is four'

Subtraction - Year 3 Calculation Policy

EDUCATION PARTNERSHIP

Look at the previous learning and recap where appropriate.

In Year 3, children should be encouraged to consider whether they can calculate mentally, with or without jottings before using a written method.

National Curriculum statutory requirements:

- Subtract numbers mentally, including: a three-digit number and ones; a three-digit number and tens; a three-digit number and hundreds
- Subtract numbers with up to three digits, using formal written methods of columnar subtraction
- Estimate the answer to a calculation and use inverse operations to check answers
- Solve problems, including missing number problems, using number facts, place value, and more complex subtraction.

| COncrete | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 346 - 24 No exchange | | | |
| Step 1: | | | |
| - Position the counters on the grid (top row). | | | |
| Step 2: | | | | Hundreds

(322). $346-24=322$

342-25 Exchanging tens Step 1:

- Position the counters on the grid (top row) Step 2:
Ones column (2 ones subtract 5 ones) - there needs to be an exchange here. Go to the tens column and exchange 1 ten for 10 ones. Add the 10 ones to the ones (top row) -
you now have 12 ones. You have 3 tens left in the tens column - cross out the 4 and change to a 3 to show this. Step 3:
- Ones column - now move down 5 counters from the top to the middle row and then subtract them away. Move the remaining 7 counters down from the top to the bottom row Step 4:
Tens column (3 tens subtract 2 tens) - move down 2 tens from the top row to the middle row and then subtract them away. Move the remaining 1 ten down from the top to the bottom row.
Step 5: Hund
Step 6: \quad ds column (3 hundreds subtract 0 hundreds) - move the 3 hundreds down into the bottom row are hundreds, 1 ten and 7 ones (317). 342-25 = 317

Key Vocabulary:

equal to, take, less, leaves, take away, less than, the difference, subtract, minus, fewer, decrease, '7 take away 3, the difference is four'

Subtraction - Year 3 Calculation Policy

education partnership
Look at the previous learning and recap where appropriate.

In Year 3, children should be encouraged to consider whether they can calculate mentally, with or without jottings before using a written method.

National Curriculum statutory requirements:

- Subtract numbers mentally, including: a three-digit number and ones; a three-digit number and tens; a three-digit number and hundreds
- Subtract numbers with up to three digits, using formal written methods of columnar subtraction
- Estimate the answer to a calculation and use inverse operations to check answers

Non-statutory requirements:

- Practise solving varied subtraction questions. For mental
calculations with two-digit numbers, the answers could exceed 100.
- Use understanding of place value and partitioning, and practise using columnar subtraction with increasingly large numbers up to three digits to become fluent.
- Solve problems, including missing number problems, using number facts, place value, and more complex subtraction.

Concrete

346-74 Exchanging hundreds Step 1:

- Position the counters on the grid (top row)

Step 2:
Ones column (6 ones subtract 4 ones) - move down 4 ones from the top to the middle row and then subtract
them away. Move the remaining 2 ones down from the top to the bottom row.
Step 3:
Tens column (4 tens subtract 7 tens) - there hundreds column and exchange 1 hundred for 10 tens. Add the 10 tens to the tens (top row) - you now have 14 tens. You have 2 hundreds left in the hundreds column cross out the 3 and change to a 2 to show this Step 4:
Tens column - move down 7 tens from the top row to the middle row and then subtract them away. Move the remaining 7 tens down from the top to the bottom row.
Step 5:
move the 2 hundreds down into the bottom row.
Step 6:
. 2 hundreds, 7 tens and 2 ones (272). 346-74 = 272
$321+46$ Exchanging tens and hundreds

$\xrightarrow{\text { Step 1: }}$

Step 2:

- Ones column (1 one subtract 6 ones) - there needs to be an exchange here. Go to the tens column and exchange 1 ten for ave 11 Add the 10 ones to the ones (top row) - you now -cross out the 2 and change to left in the tens column

Step 3:

Ones column - now move down 6 counters from the top to the middle row and then subtract them away. Move the Step 4: 5 counters down from the top to the bottom row. Step 4:

- Tens column (1 tens subtract 4 tens) - there needs to be an hundred for 10 tens. Add the 10 tens to the tens (top row) you now have 11 tens; show this by adding a 1 to the existing 1 to make 11. You now have 2 hundreds left in the tens
column - cross out the 3 and change to a 2 to show this.
Step 5 :
tep 5: away. Morm (11 tens subtract 4 tens) - move down 4 tens from the top row to the middle row and then subtract them Step 6: Move the remaining 7 tens down from the top to the bottom row.
Hundreds column (2 hundreds subtract 0 hundreds) - move the 2 hundreds down into the bottom row. Step 7: There are 2 hundreds, 7 tens and 5 ones (275). $\mathbf{3 2 1}+\mathbf{4 6}=\mathbf{2 7 5}$

Key Vocabulary:

equal to, take, less, leaves, take away, less than, the difference, subtract, minus, fewer, decrease, '7 take away 3, the difference is four'

Subtraction - Year 3 Calculation Policy

EDUCATION PARTNERSHIP
Look at the previous learning and recap where appropriate.
In Year 3, children should be encouraged to consider whether they can calculate mentally, with or without jottings before using a written method.

National Curriculum statutory requirements:

- Subtract numbers mentally, including: a three-digit number and ones; a three-digit number and tens; a three-digit number and hundreds
- Subtract numbers with up to three digits, using formal written methods of columnar subtraction
- Estimate the answer to a calculation and use inverse operations to check answers
- Solve problems, including missing number problems, using number facts, place value, and more complex subtraction.
 Step 5:

\qquad - Hundreds column (8 hundreds subtract 3 hund then Step
There are 5 hundreds, 2 tens and 4 ones (524). 873-349 = 524

Non-statutory requirements:

- Practise solving varied subtraction questions. For mental calculations with two-digit numbers, the answers could exceed 100.
- Use understanding of place value and partitioning, and practise using columnar subtraction with increasingly large numbers up to three digits to become fluent
Abstract
876 - 354 No exchange
-3
-3

873-349 Exchanging tens

$$
\begin{array}{rrr}
86713 \\
-\quad 3 & 4 & 9 \\
\hline 5 & 2 & 4
\end{array}
$$

Key Vocabulary:

equal to, take, less, leaves, take away, less than, the difference, subtract, minus, fewer, decrease, '7 take away 3, the difference is four'

Subtraction - Year 3 Calculation Policy

education partnership

Look at the previous learning and recap where appropriate.

In Year 3, children should be encouraged to consider whether they can calculate mentally, with or without jottings before using a written method.

National Curriculum statutory requirements:

- Subtract numbers mentally, including: a three-digit number and ones; a three-digit number and tens; a three-digit number and hundreds
- Subtract numbers with up to three digits, using formal written methods of columnar subtraction
- Estimate the answer to a calculation and use inverse operations to check answers
- Solve problems, including missing number problems, using number facts, place value, and more complex subtraction.

Non-statutory requirements:

- Practise solving varied subtraction questions. For mental calculations with two-digit numbers, the answers could exceed 100.
- Use understanding of place value and partitioning, and practise using columnar subtraction with increasingly large numbers up to three digits to become fluent.

Abstract
$817-352$ Exchanging hundreds

Exchanging hundreds

$$
\begin{array}{rrr}
78 & 1 & 7 \\
-\quad 3 & 5 & 2 \\
\hline 4 & 6 & 5
\end{array}
$$

643-359
Exchanging tens and hundreds

$$
\begin{array}{r}
56{ }^{13} 4{ }^{13} 3 \\
-\quad 38 \\
\hline 2
\end{array} 984
$$

Key Vocabulary:

equal to, take, less, leaves, take away, less than, the difference, subtract, minus, fewer, decrease, '7 take away 3, the difference is four'

Subtraction - Year 3 Calculation Policy

EDUCATION PARTNERSHIP
Look at the previous learning and recap where appropriate.
In Year 3, children should be encouraged to consider whether they can calculate mentally, with or without jottings before using a written method.

National Curriculum statutory requirements:

- Subtract numbers mentally, including: a three-digit number and ones; a three-digit number and tens; a three-digit number and hundreds
- Subtract numbers with up to three digits, using formal written methods of columnar subtraction
- Estimate the answer to a calculation and use inverse operations to check answers
- Solve problems, including missing number problems, using number facts, place value, and more complex subtraction.

the
Step 6:

Hundreds column (7 hundreds subtract 3 undreds) - move 3 hundreds from
the top row to the middle row and then subtract them away. Move the remaining

Pictorial

803-356 Exchanging tens and hundreds - with a zero in the tens column

800-349 Exchanging tens and hundreds - with a zero in the ones and tens column

Non-statutory requirements:

- Practise solving varied subtraction questions. For mental
calculations with two-digit numbers, the answers could exceed 100.
- Use understanding of place value and partitioning, and practise using columnar subtraction with increasingly large numbers up to three digits

Abstract

803-356 Exchanging tens and hundreds - with a zero in the tens column

800-349 Exchanging tens and hundreds - with a zero in the ones and tens column

$$
\begin{array}{r}
78{ }^{9} 88^{10} \\
-\quad 34 \\
\hline 45
\end{array}
$$

Key Vocabulary:
equal to, take, less, leaves, take away, less than, the difference, subtract, minus, fewer, decrease, '7 take away 3, the difference is four'

Subtraction - Year 4 Calculation Policy

In Year 4, children should be encouraged to consider whether they can calculate mentally, with or without jottings before using a written method.			
National Curriculum statutory requirements: - Subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction - Estimate and use inverse operations to check answers to a calculation. - Solve subtraction two-step problems in contexts, deciding which operations and methods to use and why		Non-statutory requirements: - Practise both mental methods and colunar subtraction with increasingly large numbers to aid fluency. - Pupils solve two-step problems in contexts, choosing the appropriate operation, working with increasingly harder numbers.	
Some children may still need the CPA approach, please see earlier work, especially when dealing with larger numbers or decimals.This section is split into stages of progression.			
STAGE 1: 7186-44 No exchange	STAGE 2: 7186-67 Exchanging tens	STAGE 3: 7326-62 Exchanging hundreds	STAGE 4: 7326-78 Exchanging tens and hundreds
$\begin{array}{llll}7 & 1 & 8 & 6\end{array}$	$\begin{array}{lllll}7 & 1 & 7 & 16\end{array}$	$7{ }^{7}$ 2\% ${ }^{12}$	$7{ }^{2} \not \beta^{112} 2^{1} 6$
44	67	62	$7 \quad 8$
$\begin{array}{llll}7 & 1 & 4\end{array}$	$\begin{array}{llll}7 & 1 & 1 & 9\end{array}$	$\begin{array}{llll}7 & 2 & 6 & 4\end{array}$	$\begin{array}{llll}7 & 2 & 4 & 8\end{array}$
STAGE 5: 4857-342 No exchange	STAGE 6: 4857-348 Exchanging tens	STAGE 7: 4857-592 Exchanging hundreds	$\begin{aligned} & \text { STAGE 8: } 9186 \text { - } 563 \\ & \text { Exchanging thousands } \end{aligned}$
$\begin{array}{llll}4 & 8 & 5 & 7\end{array}$	$\begin{array}{lllllllllll}4 & 8 & 4\end{array}{ }^{17}$	$4^{7} 8^{1} 5 \quad 7$	${ }^{8} 98{ }^{1} 18086$
342	$3 \begin{array}{lll}3 & 4 & 8\end{array}$	$5 \quad 9 \quad 2$	56
$\begin{array}{llll}4 & 5 & 1 & 5\end{array}$	$\begin{array}{llll}4 & 5 & 0 & 9\end{array}$	$\begin{array}{llll}4 & 2 & 6 & 5\end{array}$	$8 \quad 6 \quad 23$
Key Vocabulary: equal to, take, less, leaves, take away, less than, the difference, subtract, minus, fewer, decrease, '7 take away 3, the difference is four'			

Subtraction = Year 4 Calculation Policy

Look at the previous learning and recap where appropriate.In Year 4, children should be encouraged to consider whether they can calculate mentally, with or without jottings before using a written method.			
- Subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction - Estimate and use inverse operations to check answers to a calculation - Solve subtraction two-step problems in contexts, deciding which operations and methods to use and why.		Non-statutory requirements: - Practise both mental methods and columnar subtraction with increasingly large numbers to aid fluency. Pupils solve two-step problems in contexts, choosing the appropriate operation, working with increasingly harder numbers.	
Some children may still need the CPA approach, please see earlier work, especially when dealing with larger numbers or decimals. This section is split into stages of progression.			
STAGE 9: 9186-563 Exchanging thousands	STAGE 10: 9786-597 Exchanging tens and hundreds	STAGE 11: 9786-957 Exchanging hundreds and thousands $\begin{array}{r} { }^{8} \phi^{1} 7{ }^{7} \not \&^{1} 6 \\ -\quad 9 \quad 5 \quad 7 \\ \hline 882 \end{array}$	STAGE 12: 9786-892 Exchanging hundreds and thousands $\begin{array}{r} { }^{8} g^{16} \nmid 186 \\ -\quad 8 \quad 92 \\ \hline 8 \quad 8994 \end{array}$
STAGE 13: 9757-968 Exchanging tens, hundreds and thousands	STAGE 14: 6857-2542 No exchange $\begin{array}{rrrr} 6 & 8 & 5 \\ -\quad 2 & 5 & 4 & 2 \\ \hline 4 & 3 & 1 & 5 \end{array}$	STAGE 15: 7686-3367 Exchanging tens $\begin{array}{r} 76{ }^{7} 816 \\ -3 \\ 3 \end{array} 6679$	STAGE 16: 7684-3591 Exchanging hundreds $\begin{array}{rrrr} 7 & 5 & 18 & 4 \\ - & 3 & 5 & 9 \end{array} 119$
Key Vocabulary: equal to, take, less, leaves, take away, less than, the difference, subtract, minus, fewer, decrease, '7 take away 3, the difference is four'			

Subtraction - Year 4 Calculation Policy

Look at the previous learning and recap where appropriate. In Year 4, children should be encouraged to consider whether they can calculate mentally, with or without jottings before using a written method.			
National Curriculum statutory requirements: - Subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate. - Estimate and use inverse operations to check answers to a calculation. - Solve subtraction two-step problems in contexts, deciding which operations and methods to use and why.		Non-statutory requirements: - Practise both mental methods and columnar subtract - Pupils solve two-step problems in contexts, choo numbers.	with increasingly large numbers to aid fluency. e appropriate operation, working with increasingly harder
Some children may still need the CPA approach, please see earlier work, especially when dealing with larger numbers or decimals. This section is split into stages of progression.			
STAGE 17: 7286-2743 Exchanging thousands $\begin{array}{rrrr} 67 & { }^{1} 2 & 8 & 6 \\ -\quad 2 & 7 & 4 & 3 \\ \hline 4 & 5 & 4 & 3 \end{array}$	STAGE 18: 7235-5197 Exchanging tens and hundreds $\left.\begin{array}{rrrr} 7 & { }^{1} 2 / 12 & 12 & { }^{15} \\ - & 5 & 1 & 9 \end{array}\right) 78$	STAGE 19: 7265-5437 Exchanging tens and thousands $\begin{array}{rrrr} { }^{6} 7 & { }^{1} 2 & 5 & 5 \\ & 15 \\ -5 & 4 & 3 & 7 \\ \hline 1 & 8 & 2 & 8 \\ \hline \end{array}$	STAGE 20: 7265-2984 Exchanging hundreds and thousands $\begin{array}{rrrr} 67 & 112 & 16 & 5 \\ - & 9 & 8 & 4 \\ \hline 4 & 2 & 8 & 1 \end{array}$
STAGE 21: 7286-3597 Exchanging tens, hundreds and thousands $\begin{array}{rrrr} 6 y & 11 & { }^{17} 8 & { }^{1} 6 \\ -\quad 3 & 5 & 9 & 7 \\ \hline 3 & 6 & 8 & 9 \end{array}$	STAGE 22: 7000-3591 Exchange including zeroes		
Key Vocabulary: equal to, take, less, leaves, take away, less than, the difference, subtract, minus, fewer, decrease, '7 take away 3, the difference is four'			

Subtraction - Year 5 Calculation Policy

Look at the previous learning and recap where appropriate.

In Year 5, children should be encouraged to consider whether they can calculate mentally, with or without jottings before using a written method.

National Curriculum statutory requirements:

- Subtract numbers mentally with increasingly large numbers
- Subtract whole numbers with more than 4 digits, including using formal written methods (columnar subtraction)
- Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy

Non-statutory requirements:

Pupils practise using the formal written methods of columnar addition and subtraction with increasingly large numbers to aid fluency.

- They practise mental calculations with increasingly large numbers to aid fluency (for example, $12462-2300=10162$).
- Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why

 accomplished)
- STAGE 4 - three exchanges (tens, hundreds and thousands - to be practiced and successfully accomplished before moving on to the next stage)
-

\qquadto

Some children may still need the CPA approach, please see earlier work, especially when dealing with larger numbers or decimals.
 Some children may still need the CPA approach, please see earlier work, especially when This section is split into stages of progression.

Key Vocabulary:

equal to, take, less, leaves, take away, less than, the difference, subtract, minus, fewer, decrease, '7 take away 3, the difference is four'

Subtraction - Year 5 Calculation Policy

Look at the previous learning and recap where appropriate.

In Year 5, children should be encouraged to consider whether they can calculate mentally, with or without jottings before using a written method.

National Curriculum statutory requirements:

- Subtract numbers mentally with increasingly large numbers
- Subtract whole numbers with more than 4 digits, including using formal written methods (columnar subtraction)
- Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
- Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why

Some children may still need the CPA approach, please see earlier work, especially when dealing with larger numbers or decimals. This section is split into stages of progression.

- STAGE1- no exchanges					
- STAGEE 2- -one exchange (exchange oneoft tens,	HTh TTh	Th	H	T	0
practiced and successfully accomplished)		Th	H	T	0

- STAGE 3 - two exchanges (include different
combinations of tens, hundreds, thousands and ten
thousands - all combinations to be practiced and
successfully accomplished)
- STAGE 4 - three exchanges (include different combinations of tens, hundreds, thousands
and ten thousands - all combinations to be practiced and successfully accomplished)
- STAGE 5 - four exchanges (tens, hundreds, thousands and ten thousands - to be practiced and successfully accomplished before moving on to the next stage)

Non-statutory requirements:

Pupils practise using the formal written methods of columnar addition and subtraction with increasingly large numbers to aid fluency.
They practise mental calculations with increasingly large numbers to aid fluency (for example, $12462-2300=10162$).

Ensure that children are confident with exchange when a number includes zeroes e.g:

Key Vocabulary:

equal to, take, less, leaves, take away, less than, the difference, subtract, minus, fewer, decrease, '7 take away 3, the difference is four'

Subtraction - Year 5 Calculation Policy

Subtraction - Year 5 Calculation Policy

Subtraction - Year 5 Calculation Policy

Look at the previous learning and recap where appropriate. In Year 5, children should be encouraged to consider whether they can calculate mentally, with or without jottings before using a written method.			
National Curriculum statutory requirements: - Subtract numbers mentally with increasingly large numbers - Subtract whole numbers with more than 4 digits, including using formal written methods (columnar subtraction) - Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy - Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why		Non-statutory requirements: - Pupils practise using the formal written methods of colu to aid fluency. - They practise mental calculations with increasingly large 162).	addition and subtraction with increasingly large numbers mbers to aid fluency (for example, $12462-2300=10$
Some children may still need the CPA approach, please see earlier work, especially when dealing with larger numbers or decimals. This section is split into stages of progression.			
STAGE 17-75.32-36.19 Exchanging tenths and tens	STAGE 18-75.18-36.39 Exchanging tenths, ones and tens $\left.\begin{array}{rrrr} { }^{6} \not 7{ }^{14} 8 & .{ }^{10} 1 & { }^{1} 8 \\ - & 6 & . & 3 \end{array}\right) 9 .$	STAGE 19 including: no exchange one exchange two exchanges three exchanges $\begin{array}{r} H \quad T \quad O . t \\ -\quad H \quad T \quad O . t \\ \hline H \quad T \quad O . t \end{array}$	STAGE 20 including: no exchange one exchange two exchanges three exchanges four exchanges $\begin{array}{r} \mathrm{H} \text { TO.t h } \\ -\mathrm{H} \text { TO.t h } \\ \hline \mathrm{HTO.t} \mathrm{~h} \end{array}$
STAGE 21 including: no exchange one exchange two exchanges three exchanges four exchanges Th H T O. t $-$Th H T O. Th H T O.	STAGE 22 including: no exchange one exchange two exchanges three exchanges four exchanges five exchanges $\begin{array}{r} \text { Th H T O. t h } \\ -\mathrm{Th} \mathrm{H} \mathrm{~T} \mathrm{O.t} \mathrm{~h} \\ \hline \text { Th H T O. } \mathrm{t} \end{array}$	STAGE 23 including: no exchange one exchange two exchanges three exchanges four exchanges five exchanges Tth Th H T O.t - Th Th H T O. t	STAGE 21: once secure, children to be taught to subtract decimal numbers (up to six-digits) with a different number of places (including exchanges) e.g. 65.7-24, 80.73-9.9, 2365-824.93 Place holders needed here (see os below). Ensure this is addressed when teaching columnar subtraction.
Key Vocabulary: equal to, take, less, leaves, take away, less than, the difference, subtract, minus, fewer, decrease, '7 take away 3, the difference is four'			

Subtraction - Year 6 Calculation Policy

Look at the previous learning and recap where appropriate thus developing Year 5 experiences.

Throughout Year 6, children should be encouraged to consider whether they can calculate mentally, with or without jottings before using a written method. If

National Curriculum statutory requirements:

- Perform mental calculations, including with mixed operations and large numbers
- Solve problems involving subtraction
- Solve subtraction multi-step problems in contexts, deciding which operations and methods
- Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy
- Use their knowledge of the order of operations to carry out calculations involving the four operations

Non-statutory requirements:

- Pupils practise addition for larger numbers, using the formal written methods.
- They undertake mental calculations with increasingly large numbers and more complex calculations.
- Pupils round answers to a specified degree of accuracy, e.g. to the nearest $10,20,50$ etc., but not to
a specified number of significant figures.
- Pupils explore the order of operations using brackets; for example, $2+1 \times 3=5$ and $(2+1) \times 3=9$.

Some children may still need the CPA approach, please see earlier work, especially when dealing with larger numbers or decimals.
This section is split into stages of progression.

STAGE 1 - whole numbers with the same number of places: no exchange, one exchange, multiple exchanges E.g. maximum expectation shown below (though can go into 10 million)

M	HTh	TTh	Th	H	T	O
-	M	HTh	TTh	Th	H	T
O						
M	HTh	TTh	Th	H	T	O

STAGE 4 - decimal numbers with a different

number of places: no exchange, one exchange, multiple exchanges
E.g 1

STAGE 2 - whole numbers with a different
number of places: no exchange, one exchange, mul-
tiple exchanges
E.g. maximum expectation shown below

M	HTh TTh Th	H	T	O	
-	HTh TTh Th	H	T	O	
	M	HTh TTh Th	H	T	O

STAGE 4 - decimal numbers with a different

number of places: no exchange, one exchange, mul-
tiple exchanges
$\xrightarrow{\text { E.g } 2}$
-

$$
\mathrm{H} \quad \mathrm{~T} \quad \mathrm{O} . \mathrm{t} \quad \mathrm{~h}
$$

TTh Th H T O . t h thousandths

STAGE 3 - decimal numbers with the same number of places: no exchange, one exchange, multiple exchanges E.g. maximum expectation shown below (though can go into 10 million)

STAGE 4 - decimal numbers with a different number of places: no exchange, one exchange, multiple exchanges E.g 3

N.B. you can go up to a million and up to thousandths

Key Vocabulary:

equal to, take, less, leaves, take away, less than, the difference, subtract, minus, fewer, decrease, '7 take away 3, the difference is four'

Mulltipllication - Year $\mathbb{1}$ Calculation Policy

EDUCATION PARTNERSHIP
Where possible the con Year 1, children should be encouraged to use the CPA approach to embed their understanding of number and their relationships.
National Curriculum statutory requirements:

- Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher
- Through grouping and sharing small quantities, pupils begin to understand: multiplication and division; doubling numbers and quantities; and finding simple fractions of objects, numbers and quantities.
- They make connections between arrays, number patterns, and counting in twos, fives and tens.
Concrete

Mulltipllication - Year $\mathbb{1}$ Calculation Policy

EDUCATION PARTNERSHIP

In Year 1, children should be encouraged to use the CPA approach to embed their understanding of number and their relationships.

National Curriculum statutory requirements: - Solve one-step problems involving multiplication and division, by calculating the an of the teacher	wer using concrete objects, pictorial representations and arrays with the support
Concrete	Pictorial
Recognising and making equal groups (repeated addition). There are 5 equal groups with 3 in each group. $3+3+3+3+3=15$ There are 4 equal groups witn 4 in eacn group. $4+4+4+4=15$ Children can begin to relate this to multiplication if ready.	Recognising and making equal groups (repeated addition). Use pictorial representations including numberlines to solve calculations.
Counting in multiples of 2, 5 and 10. Count in multiples supported by concrete objects placed into equal groups (skip counting)	Counting in multiples of 2, 5 and 10. Use a numberline and other pictorial presentations to support counting in multiples.

Non-statutory requirements:

- Through grouping and sharing small quantities, pupils begin to understand multiplication and division; doubling numbers and quantities; and finding simple fractions of objects, numbers and quantities.

They make connections between arrays, number patterns, and counting in twos, fives and tens.

Recognising and making equal groups (repeated addition).
$4+4+4=12$
3 lots of $4=12$
$3 \times 4=12$

Counting in multiples of 2,5 and $\mathbf{1 0}$.

Count in multiples of number aloud.

Write sequences with multiples of numbers.

Write the missing numbers in the sequence

$$
2,4,6,8,10,12,14,16,18,20
$$

$5,10,15,20,25,30$

Key Vocabulary:

double, times, multiplied by, the product of, groups of, lots of, 'is equal to' 'is the same as'

Mullitiplication - Year 2 Calculation Policy

Look at the previous learning and recap where appropriate

In Year 2, children should be encouraged to use the CPA approach to embed their understanding of number and their relationships.

National Curriculum statutory requirements:

- Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers
- Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals (=) signs - Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts

Non-statutory requirements:

- Pupils use a variety of language to describe multiplication and division.
- Pupils are introduced to the multiplication tables. They practise to become fluent in the 2, 5 and 10 multiplication tables and connect them to each other. They connect the 10 multiplication table to place value, and the 5 multiplication table to the divisions on the clock
face. They begin to use other multiplication tables and recall multiplication facts, including using related division facts to perform written and mental calculations.
- Pupils work with a range of materials and contexts in which multiplication and division relate to grouping and sharing discrete and continuous quantities, to arrays and to repeated is a half of 40). They to reate these to fractions and measures (for example, $40 \div 2=20,20$ reasoning (for example, $4 \times 5=20$ and $20 \div 5=4$).

Concrete

Create arrays to illustrate commutativity using a range of concrete objects.

Children should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer. Make links to repeated addition.

Building on from Year 1, learn the $\times 2, \times 5$ and $\times 10$

 table facts .Develop an understanding of how to unitise groups of 2,5 and 10 and learn corresponding times-table facts.

Groups of 10 ...
10, 20, 30
$3 \times 10=\mathbf{3 0}$

Pictorial

Create arrays to illustrate commutativity using a range of concrete objects.
Children to represent the arrays pictorially.

Building on from Year 1, learn the $\times 2, \times 5$ and $\times 10$ table facts .
Understand how to relate counting in unitised groups and repeated addition with knowing key times-table facts

Abstract

Create arrays to illustrate commutativity using a range of concrete objects.

Children to be able to use an array to write a range of calculations e.g.
$10=2 \times 5$
$5 \times 2=10$
$2+2+2+2+2=10$
$10=5+5$

Building on from Year 1,

 learn the $\times 2, \times 5$ and $\times 10$ table facts.Understand how the times-tables increase and contain patterns.
$\mathbf{5 \times 1 0 = 5 0}$
$6 \times 10=60$

Key Vocabulary:

double, times, multiplied by, the product of, groups of, lots of, 'is equal to' 'is the same as'

Mulltipllication - Year 3 Calculation Policy

EDUCATION PARTNERSHIP

Look at the previous learning and recap where appropriate.

In Year 3, children should be encouraged to consider whether they can calculate mentally, with or without jottings before using a written method.

National Curriculum statutory requirements:

- Recall and use multiplication and division facts for the 3,4 and 8 multiplication tables
- Write and calculate mathematical statements for multiplication using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods
- Solve problems, including missing number problems, involving multiplication, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects

Non-statutory requirements:

- Pupils continue to practise their mental recall of multipication tables when they are calculating mathematical statements in order to
connect the 2, 4 and 8 multiplication tables. Pupils develop efficien metal methods, for Pupils develop efficient mental methods, for example, using commutativity and associativity
(for example, $4 \times 12 \times 5=4 \times 5 \times 12=20 \times 12=240$) and multiplication and divisisif) (acts (for example, using $3 \times 2=6,6 \div 3=2$ and $2=6 \div 3$) to derive related facts (for example, $30 \times 2=60,60 \div 3=20$ and $20=60 \div 3$).
- Pupils develop reliable written methods for multiplication, starting with calculations of two-digit numbers by
short multiplication.
Pupils solve sim why. These include measuring and scaling contexts, (for example, four times as hise and times as long etc.) and correspondence problems in which m objects are connected to n . times as
objects (for example, 3 hats and 4 coats, how many different outfits?

Concrete

13×3 Two-digit by one-digit (no exchange into tens)
Either Base 10 or place value counters can be used here.

Step 1.
 Partition the 13 into 10 and 3 and write these numbers on the numbers on the grid in the correct columns. Place the number that you are multiplying the 13 by at Step 2:
 Step 2
 se concrete resources to represent the 10 and 3 Step 3:
 13 is being multiplied by 3 so you need three rows of 13 in total. Add two more rows of lit using the concrete resources. You now have 3 lots of 13 . Step 4:
 - Count up all the ones - you have 9 in total.
 Write this number on the grid.

Step 5:
Step 6:

- Add the two totals together $(30+9) . \mathbf{1 3 \times 3}=\mathbf{3 9}$
14×4 Two-digit by one digit (exchange into tens)

Step

- Partition the 14 into 10 and 4 and write these numbers on the grid in the correct columns. Place
the number that you are multiplying the 14 by the number that you are multiplying the
at the side (see the 4 on the diagram).
Step 2:

at the Step 2:

- Use concrete resources to represent the 10 and 4 and position them in the grid in the top row.
- 14 is being multiplied by 4 so you need four rows of 14
in total. Add three more rows of 14 total. Add three more rows of 14 using the concrete Step 4:
- Count up all the ones - you have 16 in total. Write this number on the grid.
Step 5:
Count up all the tens - you have 40 in total. Step 6 this number on the grid. .ep 6 Step 7
Ad 10 and

X	Tens 10	Ones 3
3	\%	$\square_{\square 0}^{\square 0}$
		\square^{80}
	O	${ }^{80}$
	30	9

\times	Tens 10	Ones 3
	(1)	${ }^{\circ}{ }^{\circ}$
	(10)	${ }^{\circ} 0^{\circ}$
3	(1)	${ }^{\circ}{ }^{\circ}$
	30	9

13×3 Two-digit by one-digit (no exchange into tens)

14×4 Two-digit by one digit (exchange into tens)

Abstract

13×3 Two-digit by one-digit (no exchange into tens) Expanded short multiplication first.

13

x		3	
+		9	(3×3)
	3	0	(3×10)
	3	9	

14×4 Two-digit by one digit (with exchange into tens) Expanded short multiplication first.

	1	4	
x		4	
	1	6	(4×4)
+	4	0	(4×10)
	5	6	

Key Vocabulary:

double, times, multiplied by, the product of, groups of, lots of, 'is equal to' is the same as'

Multiplication - Year 3 Calculation Policy

In Year 3, children should be encouraged to consider whether they can calculate mentally, with or without jottings before using a written method.

National Curriculum statutory requirements:

- Recall and use multiplication and division facts for the 3,4 and 8 multiplication tables
- Write and calculate mathematical statements for multiplication using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods
- Solve problems, including missing number problems, involving multiplication, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects

Concrete

22×4 Two-digit by one-digit (no exchange into tens)
Either Base 10 or place value counters can be used here.

Step 1

- Partition the 22 into 20 and 2 and write these numbers on the grid in the correct columns. Place the number that you are multiplying the 22 by at the side (see the 4 on the diagram).

Step 2:

Use concrete resources to represent the 20 and 2 and positio
Step 3:

- 22 is being multiplied by 4 so you need four rows of 22 in total. You now have 4 lots of 22.
Count up all the ones - you have 8 in total. Write this
Step 5:
- Count up all the tens - you have 80 in total. Write this number on the grid.
- Add the two totals together $(80+8) .22 \times 4=\mathbf{8 8}$

X	Tens 20	Ones 2	X	Tens 20	Ones 2
4	\%	$\square \square$	4	(10) (10)	(1) (1)
	\%	${ }^{80}$		(10) 10	(1) 1
	\%	${ }^{9}$		(10) 10	(1) ${ }^{1}$
	\%	${ }^{\square}$ a		(10) 10	(1) 1
	80	8		80	8

30×8 Two-digit by one digit (exchange into tens)

 N.B. Base 10 can still be used.Step 1:

Step 1:

- Partition the 38 into 30 and 8 and write these numbers on the grid in the correct columns. Place the Step 2:
Step concrete resources to represent the 30 and 8 and position them in the grid in the top row.
Step 3:
- 38 is being multiplied by 4 so you need four rows of 38 in total. Add three more rows of 38 using the
concrete resources. You now have 4 lots of 38 . These three steps apply to expanded short multiplication:
These th
Step 4:
S Count
- Count up all the ones - you have 32 in total. Write this number on the grid.
sten 5:
- Count up all the tens - you have 120 in total. Write this number on the grid.

Step 6: - Add the two total together $(120+32) .38 \times 8=152$
These three steps apply to expanded short multiplication:

These th Step 4:

Step 5:
Step 5:

- Combine all the tens (in addition to the 3 tens exchanged in previous step). You have 15 tens. Exchange 10 tens to 1 hundred and move this
across to the hundredss column. Step $6:$
- There should now be 1 hundred (in the hundreds column) 5 tens (in the tens column) and 2 ones (in the ones column). $\mathbf{3 8} \times \mathbf{4 = 1 5 2}$.

Key Vocabulary:

double, times, multiplied by, the product of, groups of, lots of, 'is equal to' 'is the same as'

Mulltiplication - Year 4. Calculation Policy

Look at the previous learning and recap where appropriate.
In Year 4, children should be encouraged to consider whether they can calculate mentally, with or without jottings before using a written method.

| National Curriculum statutory requirements: |
| :--- | :--- |
| - Recall multiplication and division facts for multiplication tables up to 12×12 |
| - Recognise and use factor pairs and commutativity in mental calculations |
| - Use place value, known and derived facts to multiply mentally, including: multiplying by 0 and 1 and multiplying together three |
| numbers |
| - Multiply two-digit and three-digit numbers by a one-digit number using formal written layout |
| - Solve problems involving multiplying and adding, including using the distributive law to multiply two-digit numbers by one digit, integer |
| scaling problems and harder correspondence problems such as n objects are connected to m objects |

Non-statutory requirements:

- Pupils practise recalling and using multiplication tables and related division facts to aid fluency.
Pupils practise mental methods and extend this to three-digit numbers to derive facts, (e.g. $600 \div 3=200$ can be derived from $2 \times 3=6$).
Pupils are fluent in the formal written method of short multiplication with exact answers.
- Pupils write statements about the equality of expressions (e.g. use the distributive law $39 \times 7=30 \times 7+9 \times 7$ and associative law $(2 \times 3) \times 4=2 \times(3 \times 4))$. They combine their knowledge of number facts and rules of arithmetic to solve mental and written calculations e.g, $2 \times 6 \times 5=10 \times 6=60$.
Pupils solve two-step problems in contexts, choosing the appropriate operation, working with increasingly harder numbers. This should include correspondence questions such as the numbers of choices of a meal on a menu, or three cakes shared equally between 10 children.

Some children may still need the CPA approach, please see earlier work, especially when dealing with larger numbers or decimals. This section is split into stages of progression.

STAGE 1: 324×2 Three-digit by one-digit (no exchange)

Base $\mathbf{1 0}$ or place value counters can be used here if needed.
Both methods for multiplication are shown below - most pupils should move to the compact method once secure with the expanded.

STAGE 2: 323×5 Three-digit by one-digit (with exchange) Base $\mathbf{1 0}$ or place value counters can be used here (if needed).
$\left.\begin{array}{llll} & 3 & 2 & 3 \\ \times & & & 5 \\ \hline\end{array} \begin{array}{llll} & 1 & 5 & (5 \times 3) \\ & & & 1\end{array}\right) \quad(5 \times 20)$

It is important that the whole school adopt the same 'carry' positions for these numbers.

Key Vocabulary:

double, times, multiplied by, the product of, groups of, lots of, 'is equal to' 'is the same as'

Mulkiplication - Year 5 Calculation Policy

education partnership
Look at the previous learning and recap where appropriate.
In Year 5, children should be encouraged to consider whether they can calculate mentally, with or without jottings before using a written method.

| National Curriculum statutory requirements: |
| :--- | :--- |
| - Identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers |
| - Know and use the vocabulary of prime numbers, prime factors and composite (nonprime) numbers |
| - Establish whether a number up to 100 is prime and recall prime numbers up to 19 |
| - Recognise and use square numbers and cube numbers, and the notation for squared (2) and cubed (3) |
| - Multiply and divide numbers mentally drawing upon known facts |
| - Multiply and divide whole numbers and those involving decimals by 10,100 and 1000 |
| - Multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers |
| - Solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes |
| - Solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign |
| - Solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates |

Non-statutory requirements

Pupils practise and extend their use of the formal written methods of short multiplication. They apply all the multiplication tables and related division facts frequently, commit them to memory and use them confidently to make larger calculations.
They use and understand the terms factor, multiple and prime, square and cube numbers.

- Pupils use multiplication and division as inverses to support the introduction of ratio in year 6, for example, by multiplying and dividing by powers of 10 in scale drawings or by multiplying and dividing by powers of a

Distributivity can be expressed $a s a(b+c)=a b+a c$.

- They understand the terms factor, multiple and prime, square and cube numbers and use them to construct equivalence statements (for example, $4 \times 35=2 \times 2 \times 35 ; 3 \times 270=3 \times 3 \times 9 \times 10=92 \times 10$).
Pupils use and explain the equals sign to indicate equivalence, including in missing number problems (for example, $13+24=12+25 ; 33=5 \times ?$).

Some children may still need the CPA approach, please see earlier work, especially when dealing with larger numbers or decimals. This section is split into stages of progression.

STAGE 1: 3124×6 Four-digit by a one-digit (with exchange) Base $\mathbf{1 0}$ or place value counters can be used here if needed. The children should now be secure with the compact method, however some children may still be working on the expanded method initially. It is important that the whole school adopt the same 'carry' positions for these numbers.	STAGE 2: 42×17 Two-digit by a two-digit (with exchange) The children should look at the expanded method here to develop an understanding of the method. Only when the children are secure,
Key Vocabulary: double, times, multiplied by, the product of, groups of, lots of, 'is equal to' 'is the same	

Multiplication - Year 5 Calculation Policy

EDUCATION PARTNERSHIP

Look at the previous learning and recap where appropriate.

In Year 5, children should be encouraged to consider whether they can calculate mentally, with or without jottings before using a written method.

National Curriculum statutory requirements:

- Identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers
- Know and use the vocabulary of prime numbers, prime factors and composite (nonprime) numbers
- Establish whether a number up to 100 is prime and recall prime numbers up to 19
- Recognise and use square numbers and cube numbers, and the notation for squared (2) and cubed (3)
- Multiply and divide numbers mentally drawing upon known facts
- Multiply and divide whole numbers and those involving decimals by 10,100 and 1000
- Multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers - Solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes

Solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign

Non-statutory requirements:

- Pupils practise and extend their use of the formal written methods of short multiplication. They apply all the multiplication tables and related division facts frequently, commit them to memory and use them confidently to make larger calculations.
They use and understand the terms factor, multiple and prime, square and cube numbers.
- Pupils use multiplication and division as inverses to support the introduction of ratio in year 6 , for example, by multiplying and dividing by powers of 10 in scale drawings or by multiplying and dividing by powers of a 1000 in converting between units such as kilometres and meters.
- Distributivity can be expressed as $a(b+c)=a b+a c$.
- They understand the terms factor, multiple and prime, square and cube numbers and use them to construct equivalence statements (for example, $4 \times 35=2 \times 2 \times 35 ; 3 \times 270=3 \times 3 \times 9 \times 10=92 \times 10$).

Pupils use and explain the equals sign to indicate equivalence, including in missing number problems (for example, $13+24=12+25 ; 33=5 \times$?).

Some children may still need the CPA approach, please see earlier work, especially when dealing with larger numbers or decimals.
This section is split into stages of progression.

STAGE 3: 534×16 Three-digit by a two-digit (with exchange)
The children should look at the expanded method first to develop an understanding of the calculation.

,	5	3	4	
X		1	6	
		2	4	(6x4)
	1	8	0	(6×30)
	0	0	0	(6×500)
+		4	0	(10×4)
	3	0	0	(10×30)
5	0	0	0	(10×500)
8	5	4	4	

Only when the children are secure, should they be moved on to the compact method.

\times| | 5 | 3 | 4 |
| ---: | ---: | ---: | ---: |
| | | 1 | 6 |
| 3 | 2 | 2 | 4 |
| 5 | 3 | 4 | 0 |
| 8 | 5 | 4 | 4 |

It is important that the whole school adopt the same 'carry' positions for these numbers.

STAGE 4: 3234×18 Four-digit by a two-digit

Key Vocabulary:

double, times, multiplied by, the product of, groups of, lots of, 'is equal to' 'is the same as'

Mulkiplication - Year 6 Calculation Policy

EDUCATION PARTNERSHIP

Look at the previous learning and recap where appropriate.

In Year 6, children should be encouraged to consider whether they can calculate mentally, with or without jottings before using a written method.

National Curriculum statutory requirements:

- Identify common factors, common multiples and prime numbers
- Perform mental calculations, including with mixed operations and large numbers
- Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication
Solve problems involving the four operations
Use their knowledge of the order of operations to carry out calculations involving the four operations

Non-statutory requirements:

- Pupils practise addition, subtraction, multiplication and division for larger numbers, using the formal written methods of columnar addition and subtraction, short and long multiplication, and short and long division.
They undertake mental calculations with increasingly large numbers and more complex calculations.
Pupils continue to use all the multiplication tables to calculate mathematical statements in order to maintain their fluency.
- Pupils round answers to a specified degree of accuracy, for example, to the nearest $10,20,50$ etc., but not to a specified number of significant figures.
Pupils explore the order of operations using brackets; for example, $2+1 \times 3=5$ and $(2+1) \times 3=9$ Common factors can be related to finding equivalent fractions.

Some children may still need the CPA approach, please see earlier work, especially when dealing with larger numbers or decimals, in particular place value counters may be beneficial here.

Once the children are secure with multiplying whole numbers (up to 4 digits by two-digits) move on to decimal numbers.

STAGE 1: 16.2 x 4 Up to tenths multiplied by a one-digit number

	1	6	-		
X		4			
		0	-	8	(4x0.2)
$+$	2	4	-	0	(4x6)
	4	0	-	0	(4×10)
	6	4	-	8	

No exchange initially.

五y when the children are secure, should they be moved on to the compact method.

Once the children are secure with multiplying whole numbers (up to 4 digits by two-digits) move on to decimal numbers.
STAGE 2: 36.23 x 3 Up to hundredths multiplied by a one-digit number

Key Vocabulary:

double, times, multiplied by, the product of, groups of, lots of, 'is equal to' 'is the same as'

